Theory of integer equivariant estimation with application to GNSS

نویسنده

  • P. J. G. Teunissen
چکیده

Carrier phase ambiguity resolution is the key to high-precision global navigation satellite system (GNSS) positioning and navigation. It applies to a great variety of current and future models of GPS, modernized GPS and Galileo. The so-called ‘fixed’ baseline estimator is known to be superior to its ‘float’ counterpart in the sense that its probability of being close to the unknown but true baseline is larger than that of the ‘float’ baseline, provided that the ambiguity success rate is sufficiently close to its maximum value of one. Although this is a strong result, the necessary condition on the success rate does not make it hold for all measurement scenarios. It is discussed whether or not it is possible to take advantage of the integer nature of the ambiguities so as to come up with a baseline estimator that is always superior to both its ‘float’ and its ‘fixed’ counterparts. It is shown that this is indeed possible, be it that the result comes at the price of having to use a weaker performance criterion. The main result of this work is a Gauss– Markov-like theorem which introduces a new minimum variance unbiased estimator that is always superior to the well-known best linear unbiased (BLU) estimator of the Gauss–Markov theorem. This result is made possible by introducing a new class of estimators. This class of integer equivariant estimators obeys the integer remove–restore principle and is shown to be larger than the class of integer estimators as well as larger than the class of linear unbiased estimators. The minimum variance unbiased estimator within this larger class is referred to as the best integer equivariant (BIE) estimator. The theory presented applies to any model of observation equations having both integer and real-valued parameters, as well as for any probability density function the data might have.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards a unified theory of GNSS ambiguity resolution

In this invited contribution a brief review will be presented of the integer estimation theory as developed by the author over the last decade and which started with the introduction of the LAMBDA method in 1993. The review discusses three different, but closely related classes of ambiguity estimators. They are the integer estimators, the integer aperture estimators and the integer equivariant ...

متن کامل

Mixed Integer Estimation and Validation for Next Generation GNSS

The coming decade will bring a proliferation of Global Navigation Satellite Systems (GNSS) that are likely to revolutionize society in the same way as the mobile phone has done. The promise of a broader multi-frequency, multi-signal GNSS “system of systems” has the potential of enabling a much wider range of demanding applications compared to the current GPS-only situation. In order to achieve ...

متن کامل

GNSS Ambiguity Bootstrapping: Theory and Application

The purpose of carrier phase ambiguity resolution is to improve upon the precision of the estimated GNSS baseline by means of the integer ambiguity constraints. There exists a whole class of integer ambiguity estimators from which one can choose. Members from this class are, for instance, integer rounding, integer bootstrapping and integer leastsquares. In this review paper we will present the ...

متن کامل

The Gnss Ambiguity Ratio-test Revisited: a Better Way of Using It

Integer carrier phase ambiguity resolution is the key to fast and high-precision global navigation satellite system (GNSS) positioning and application. Apart from integer estimation, also acceptance tests are part of the ambiguity resolution process. A popular acceptance test is the so-called ratio-test. In this contribution we study the properties and the underlying concepts of the ratio-test....

متن کامل

GNSS Integer Ambiguity Estimation and Evaluation: LAMBDA and Ps-LAMBDA

Successful integer carrier-phase ambiguity resolution is crucial for high precision GNSS applications. It includes both integer estimation and evaluation. For integer estimation, the LAMBDA method has been applied in a wide variety of GNSS applications. The method’s popularity stems from its numerical efficiency and statistical optimality. However, before conducting ambiguity resolution, one ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003